12 Sep there are several benefits as well as challenges associated with the use of Big Data Analytics in the e-Healthcare
2 pages or 550 words
As outlined within this weeks topic, there are several benefits as well as challenges associated with the use of Big Data Analytics in the e-Healthcare industry. Pick one of the four concepts below and then identify the benefits and challenges associated with that concept. Do not simply list the benefits and challenges but detail them in a substantive, thorough post as it relates to that concept in the e-healthcare industry.
- Data Gathering
- Storage and Integration
- Data Analysis
- Knowledge Discovery and Information Interpretation
Data Science & Big Data Analytics
Discovering, Analyzing, Visualizing and Presenting Data
EMC Education Services
WILEY
'
Data Science & Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data
Published by John Wiley & Sons, Inc. 10475 Crosspoint Boulevard Indianapolis, IN 46256 www. wiley. com
Copyright© 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada
ISBN: 978-1-118-87613-8 ISBN: 978-1-118-87622-0 (ebk) ISBN: 978-1-118-87605-3 (ebk)
Manufactured in the United States of America
10987654321
No part ofthis publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis- sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http: I /www. wiley. com/ go/permissions.
limit ofliability/DisclaimerofWarranty: The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or website may provide or recommendations it may make. Further, readers should be aware that Internet websites listed in this work may have changed or disappeared between when this work was written and when it is read.
For general information on our other products and services please contact our Customer Care Department within the United States at (877) 762-2974, outside the United States at (317) 572-3993 orfax (317) 572-4002.
Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand.lf this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at http: I /book support. wiley. com. For more information about Wiley products, visit www. wiley. com.
library of Congress Control Number: 2014946681
Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other coun- tries, and may not be used without written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.
Credits
Executive Editor
Carol Long
Project Editor
Kelly Talbot Production Manager
Kathleen Wisor Copy Editor
Karen Gill Manager of Content Development
and Assembly
Mary Beth Wakefield Marketing Director
David Mayhew
Marketing Manager
Carrie Sherrill
Professional Technology and Strategy Director
Ba rry Pruett
Business Manager
Amy Knies Associate Publisher
Jim Minatel Project Coordinator, Cover
Patrick Redmond Proofreader
Nancy Carrasco Indexer
Johnna Van Hoose Dinse Cover Designer
Mallesh Gurram
About the Key Contributors
David Dietrich heads the data science education team within EMC Education Services, where he leads the
curriculum, strategy and course development related to Big Data Analytics and Data Science. He co-au- thored the first course in EMC's Data Science curriculum, two additional EMC courses focused on teaching leaders and executives about Big Data and data science, and is a contributing author and editor of this
book. He has filed 14 patents in the areas of data science, data privacy, and cloud computing. David has been an advisor to severa l universities looking to develop academic programs related to data
analytics, and has been a frequent speaker at conferences and industry events. He also has been a a guest lecturer at universi- ties in the Boston area. His work has been featured in major publications including Forbes, Harvard Business Review, and the 2014 Massachusetts Big Data Report, commissioned by Governor Deval Patrick.
Involved with analytics and technology for nearly 20 years, David has worked with many Fortune 500 companies over his career, holding mu lti ple roles involving analytics, including managing ana lytics and operations teams, delivering analytic con-
sulting engagements, managing a line of analytical software products for regulating the US banking industry, and developing Sohware-as-a-Service and BI-as-a-Service offerings. Additionally, David collaborated with the U.S. Federal Reserve in develop-
ing predictive models for monitoring mortgage portfolios. Barry Heller is an advisory technical education consultant at EMC Education Services. Barry is a course developer and cu r-
riculum advisor in the emerging technology areas of Big Data and data science. Prior to his current role, Barry was a consul- tant research scientist leadi ng numerous analytical initiatives within EMC's Total Customer Experience organization. Early in his EMC career, he managed the statistical engineering group as well as led the
data warehousing efforts in an Enterprise Resource Planning (ERP) implementation. Prior to joining EMC,
Barry held managerial and analytical roles in reliability engineering functions at medical diagnostic and technology companies. During his career, he has applied his quantitative skill set to a myriad of business applications in the Customer Service, Engineering, Ma nufacturing, Sales/Marketing, Finance, and Legal
arenas. Underscoring the importance of strong executive stakeholder engagement, many of his successes
have resulted from not only focusing on the technical details of an analysis, but on the decisions that will be resulting from the analysis. Barry earned a B.S. in Computational Mathematics from the Rochester Institute ofTechnology and an M.A. in
Mathematics from the State University of New York (SUNY) New Paltz. Beibei Yang is a Technical Education Consultant of EMC Education Services, responsible for developing severa l open courses
at EMC related to Data Science and Big Data Analytics. Beibei has seven years of experi ence in the IT industry. Prior to EMC she worked as a sohware engineer, systems manager, and network manager for a Fortune 500 company where she introduced
new technologies to improve efficiency and encourage collaboration. Beibei has published papers to
prestigious conferences and has filed multiple patents. She received her Ph.D. in computer science from the University of Massachusetts Lowell. She has a passion toward natural language processing and data
mining, especially using various tools and techniques to find hidden patterns and tell storie s with data. Data Science and Big Data Analytics is an exciting domain where the potential of digital information is maximized for making intelligent business decisions. We believe that this is an area that will attract a lot of talented students and professiona ls in the short, mid, and long term.
Acknowledgments
EMC Education Services embarked on learning this subject with the intent to develop an "open" curriculum and certification. It was a challenging journey at the time as not many understood what it would take to be a true
data scientist. After initial research (and struggle), we were able to define what was needed and attract very talented professionals to work on the project. The course, "Data Science and Big Data Analytics," has become
well accepted across academia and the industry. Led by EMC Education Services, this book is the result of efforts and contributions from a number of key EMC organizations and supported by the office of the CTO, IT, Global Services, and Engi neering. Many sincere
thanks to many key contributors and subject matter experts David Dietrich, Barry Heller, and Beibei Yang for their work developing content and graphics for the chapters. A special thanks to subject matter experts John Cardente and Ganesh Rajaratnam for their active involvement reviewing multiple book chapters and
providing valuable feedback throughout the project.
We are also grateful to the fol lowing experts from EMC and Pivotal for their support in reviewing and improving the content in this book:
Aidan O'Brien Joe Kambourakis
Alexander Nunes Joe Milardo
Bryan Miletich John Sopka
Dan Baskette Kathryn Stiles
Daniel Mepham Ken Taylor
Dave Reiner Lanette Wells
Deborah Stokes Michael Hancock
Ellis Kriesberg Michael Vander Donk
Frank Coleman Narayana n Krishnakumar
Hisham Arafat Richard Moore
Ira Sch ild Ron Glick
Jack Harwood Stephen Maloney
Jim McGroddy Steve Todd
Jody Goncalves Suresh Thankappan
Joe Dery Tom McGowa n
We also thank Ira Schild and Shane Goodrich for coordinating this project, Mallesh Gurram for the cover design, Chris Conroy and Rob Bradley for graphics, and the publisher, John Wiley and Sons, for timely support in bringing this book to the
industry.
Nancy Gessler
Director, Education Services, EMC Corporation
Alok Shrivastava
Sr. Direc tor, Education Services, EMC Corporation
Contents Introduction ……………. . .. . …..• . •.. … …. •….. .. .. . .. . ………. .. … . ………………… •.•…… xvii
Chapter 1 • Introduction to Big Data Analytics ………………. . . . ………………….. 1
1.1 Big Data Overview ………………… ……. …..•… • …… . . . …….. • .. … . . … ……. ……. 2 1.1.1 Data Structures .. . .. . . . .. ……………. … … . .. . …… . .. .. …. . ……………….. ….. . .. . . . .. 5 1.1.2 Analyst Perspective on Data Repositories . ……………………….. . ………. …….•. … … .. .. 9
1.2 State of the Practice in Analytics ……………………………………………………….. . 11 1.2.1 Bl Versus Data Science ………….. …. ……. . .. . ……….. . . . …. . ………………….. .. …. 12 1.2.2 Current Analytical Architecture … . …. .• . . ……………. …. ………….. …. …. …… •.. . ….. 13 1.2.3 Drivers of Big Data ……………………………………………. . . . .. …………….. .. … . . 15 1.2.4 Emerging Big Data Ecosystem and a New Approach to Analytics .. ……. …… . ………… .. ……. 16
1.3 Key Roles for the New Big Data Ecosystem ……. ….. ……… . ……. . ….. .. ……………….. 19 1.4 Examples of Big Data Analytics … …. ………. …. . … ……. … …. . …… . ……………….. 22 Summary ………….. ………… … … ……… …. • … •……. …….. .. • ..•… . ……………. 23 Exercises ………………… …. ….. .. …… . ……•……… .. .. . … …. . ..•……………….. 23 Bibliography ……………………… …. .. … … … •………………. .. • …… ….. ….. ……. 24
Chapter 2 • Data Ana lytics Lifecycle …………………………………………….. . 25 2.1 Data Analytics Lifecycle Overview … ….. . …………. • …… •.. ….. …… • … •…………. . . . 26
2.1.1 Key Roles for a Successful Anolytics Project …. . .. . …. …. . …….. . .. .. . ..•……… •. •……. . .. . . 26 2.1.2 Background and Overview of Data Analytics Lifecyc/e …………………….. . …….•… . ….. … 28
2.2 Phase 1: Discovery ….. .. .. .. . ……………………….. . ..•………………… •……….. . 30 2.2.1 Learning the Business Domain .. . ……. … ..•.•. •…. . .. ….. . . .. . ……………….•……….. .30 2.2.2 Resources . . … . ………………. . …… . ……………………. ….. …………. •…….•…. 31 2.2.3 Framing the Problem …………•…. . ……………………………..•……… •.•…. . . …… 32 2.2.41dentifying Key Stakeholders … .. ………………….. … . … ……… …. . ……. •. . ………. . . 33 2.2.51nterviewing the Analytics Sponsor …… …….. …… .. ………. …. … .. … ….. .. ……….. … 33 2.2.6 Developing Initial Hypotheses …………….. .. . . . .. . . . .. . . . . … …. .. ……….. . . •………… . . 35 2.2.71dentifying Po tential Data Sources . … …•. •.. …. . . .. . ……•. •………. . ……. . ….. . … . .. .. . . 35
2.3 Phase 2: Data Preparation …………………………………………………..•…•..•….. 36 2.3.1 Preparing the Analytic Sandbox . ………….. . …………………. … •. •…….•………. .. …. 37 2.3.2 Performing ETLT …………………………………………………………•.•…….•… .. . 38 2.3.3 Learning About the Data .. ….. . ………….. .. ……………………•.•…….•.•…….. ….. . 39 2.3.4 Data Conditioning ……. .. ….•………. . ………………….. .. . .. . . . ……•. •…………. .. .40 2.3.5 Survey and Visualize . . . … .. …. .. .. …… . . ….. .. . ……………… . . •. …… . .•.. .. .. .. . . . ….. 41 2.3.6 Common Tools for the Data Preparation Phase . . . …. .. ….. ……. . •……… •.• .•.. .. ….. .. .. . . .42
2.4 Phase 3: Model Planning ……………………….•…………….. . … . .. •….. …..•…….. 42 2.4.1 Data Exploration and Variable Selection . . … . . .. . ……… •… . … . . …….. . ………….. .. .. . . . .44 2.4.2 Model Selection . … ……………. . .. . . . ……………. •…….•…•…………………….. . .45 2.4.3 Common Tools for the Model Planning Phase . . ……….•……. . . •. ……………………… . . . .45
CONTENTS
2.5 Phase 4: Model Building …… ……………… …… •. … ….. …. • … •. . •. .. •………•…•…. 46 2.5.1 Common Tools for th e Mode/Building Phase …… .. .. . ….. .. ….. . ……. . .. . . .. . . .. . …. . . .. . …. 48
2.6 Phase 5: Communicate Re sults ……… …. …… . … •…….. …….. … . •….. …..•. ….. •…. 49 2.7 Phase 6: Operationalize … … ……. … . .. …….. ……. … ……….. •. . •. . … ……. ………. SO 2.8 Case Study: Global Innovation Network and Analysis (GINA) …………….. •…………………. 53
2.8.1 Phase 1: Discovery ……………………………………………………………………… 54 2.8.2 Phase 2: Data Preparation …. •…….. . ……………………………………………… . …. 55 2.8.3 Phase 3: Model Planning . . . …•.•. . . .. . . ….. .. . . .. . ….. .. .. … …… . . . ………………. . . . .. . . 56 2.8.4 Phase 4: Mode/Building ….. . ….•.. .. .. ………. . ………….. . . .. . … . . ……. .. . …. … . .. . . . 56 2.8.5 Phase 5: Commun icate Results .. . . ….. . …… .. …… … .. . .. . . ………………… …… …….. 58 2.8.6 Phase 6: Operationalize . . … ……•….. ..• .. . . . .. . . …………..•………………………….. 59
Summary …………………………… • …………….. •..•.. •…….•…..••…….. . ….•…. 60 Exercises ……………………………•…. .. …………..•. . •………………….. . . . . . •…. 61 Bibliography ….• . .••……………………………..•…. . . • ….. .. ……………………….. 61
Chapter 3 • Review of Basic Data Analytic Methods Using R . . . . . . .. . … . .. .. . … . . . . . .. … . 63
3.1 Introd uction toR ………………………. … ……………………………… ….. ……… 64 3.1.1 R Graphical User Interfaces . ………… . …………………………. …… . .. … . . . … ……. … 67 3.1.2 Data Import and Export. . ……… . .. …………. ……….. ……….. ……………….. ……. 69 3.1.3 Attribute and Data Types . ………. .. …… . ………………………………………………. 71 3.1.4 Descriptive Statistics ………………….. . . . …………………………………………….. 79
3.2 Exploratory Data Analysis ………….. • … . .• •………….•……….. . ……………….. …. 80 3.2.1 Visualization Before Analysis …….. . …………………………………………..•……….. 82 3.2.2 Dirty Data ………… .. ………………………………………… . ……….. …•…… …. . 85 3.2.3 Visualizing a Single Variable …….. •.. . ……………. .. .. . . ……….. . …. ……. •.. . . . …. .. . . 88 3.2.4 Examining Multiple Varia bles . …. …. ….• . .. . … ………. ………….. …… . .. .. ………….. 91 3.2.5 Data Exploration Versus Presentation …… . …….. •. . . . .. . . ….. …… ………………. …… .. 99
3.3 Statistical Methods for Evaluation ……………….. . .. .• ……… … . .. ……………….. . .. 101 3.3.1 Hypoth esis Testing …….. …….. ………. …. ………………………. . .. . …… .. …… . … 102 3.3.2 Difference of Means …… . …. .. . …. ….. . …………………………………………….. 704 3.3.3 Wilcoxon Rank-Sum Test …………….•…………………… … .. . … . ……………… •… 108 3.3.4 Type I and Type II Errors … . …… . .. . ……………… . …….. . .. …. .. ……………………. 109 3.3.5 Power and Sample Size …..•.. . . .. . … …… . …….. ……. ………….. ……. .. …. ………. 110 3.3.6 ANOVA . ……………. . .. ……… . . …. .. . . … …. …….. . . .. ….. . … .. .. …. . •. •…….•… . 110
Summary …… …………. • ……. …… ….• .. •… • …………………………. •……•…… 114 Exercises …… ……… ……………………. . …………… …… . … … ……. •…………. 114 Bibliography …………………………….. . . . …………….. ……………… •…. . . .. . …. 11 5
Chapter 4 • Advanced Analytical Theory and Method s: Clu stering .. . . .. . .. . … . .. . . . … . .. 117
4.1 Overview of Clustering …….. …… ……… .. …………………………………………. 11 8 4.2 K-means …………… ……. … ………………….. .. …….. . … . ………. . …. . …. …. 11 8
4.2.1 Use Cases ….. .. …………. . •…..• … … .. ….. …….. ………. . . .. …….. …… … .. . …… 119 4.2.2 Overview of the Method . ………… ……. … . .. …….. ………………. … … .. . .•. ….. . .. . 120 4.2.3 Determining the Number of Clusters . . . .. .. •. •…………………. . ………. ….. .. … …… . … 123 4.2.4 Diagnostics .. ……………………. …•…. ……….. ….. ………………….. .. .. ……. . 128
CONTENTS
4.2.5 Reasons to Choose and Cautions .. . .. . . . . . . .. . . . . . .. … . ….. … .. .. . . • . •. • . . …•. • .• . … . ….. … 730 4.3 Add itional Algorithms ………….. … . . . . .. . …… . … . …….. .• .. .. . .. ……………. .. …. 134 Summary ……… …. …………………… .. . ………………….. . . . ..•.. . ……………… 135 Exercises ……….. ………………… . . ….. . …………………………. . ………. .. ….. . 135 Bibliography ……………………….. ……. ………………………….. . ……………… 136
Chapter 5 • Advanced Analytica l Theory and Methods: Association Ru les ……………… 137
5.1 Overview …. . . … …………………………………. .. . .. . ….. . .. ……………… .. …. 138 5.2 A priori Algorit hm ……….. . …………… . . . …… … . . …. . . ….. ………. .. ……… … … 140 5.3 Evaluation of Candidate Rules ………………….. . … .. . .. ….. • ……. . ……………. ….. 141 5.4 Applications of Association Rules ………… … ….. . ….. . . . … ….. . . .. . . . …… ………….. 143 5.5 An Example: Transactions in a Grocery Store … . ……………….. …. . . … ………. ……….. 143
5.5.1 The Groceries Dataset ………………. . . .. ………….. •……….. •… . …….•…………… 144 5.5.2 Frequent ltemset Generation . . ……………………… .. ……… . . • . •……… •…………… 146 5.5.3 Rule Generation and Visualization …… . … . ……………………. . .•. •…. . •. •……….. . .. . 752
5.6 Validation and Testing ……….. . … …. . . ……………………………………… . ……. 157 5.7 Diagnostics .. …. ………………… . .. . . ….. . ………… . … . . … . …… . ……… .. …. . . . 158 Summa ry ……. .. ……………. . ….. … . . .. . . …… …. …. . …….. . . …. ….. ………….. . . 158 Exercises ………………………….. … . . . …….. . …………….. . …. ……. ……… . …. 159 Bibliog raphy ………………………….. . .. …. ….. ………… ….. . … ……….. … . …… . 160
Chapter 6 • Advanced Analytical Theory and Methods: Regression ……………… . ….. 161
6.1 Li near Regression ………. . ………. . .. . .. .. …… . ………… …. . . . ……. ……….. …… 162 6.1.1 UseCases . . . … . . . .. . …… ….. ……………………. .. . ……. …. …. .. …… . ………. . .. . /62 6.1.2 Model Description .. … .. . .. . ….. . ……….. . .. . .. …. . . •. ….. . •. •.• . …… . .•…………. . .. . 163 6.1.3 Diagnostics ………………….. . …. .. . . . . . . ……. •.•.• …..•. •.•…… .• . • .•.. . .. . …. . . . . . . . 773
6.2 Logistic Regression ………… …….. . ….. ………………………….. . ……… .. .. . .. .. 178 6.2.1 Use Cases …… . ………………………………… …. ……………. …. ………………. 179 6.2.2 Model Description …….. .. …. … •….. . …. …….. .. .. • . ….. … . .•. •…• .•………………. 179 6.2.3 Diagnostics …………….. ….. …… . . .. …………•. •. ……..•. ….. .• .•………………. 181
6.3 Reasons to Choose and Cautions ……. . . …. .. …. ………… ……….. ……… ……. ….. . 188 6.4 Additional Regression Models ………… … .. …… . … . …………. . … …….. ……….. … 189 Summary ……….. …. . . ……….. . ……. . ………•… . …… . …… … . .. . . … .. ……….. . . 190 Exercises ………… .. ………. .. . .. ……………. .. .. .. ………… . . .. ………. . . . .. .. …. . . 190
Chapter 7 • Advanced Ana lytical Theory and Methods: Classification …… . ………. . …. 191
7.1 Decision Trees … .. …………… …… ………… …………. ………. ………….. … …. 192 7.1.1 Overview of a Decision Tree …… . ……………….. .. . …………………… .. …. ….. . …… 193 7.1.2 The General Algorithm . ………….. ………….. … ..•. … ………….. .• .. .. …….. …. . .. . . 197 7.1.3 Decision Tree Algorithms …………. .. . …. .. ……•. . .•.. … • . •… …. . …. … . ………….. .. 203 7.1.4 Evaluating a Decision Tree …………. . . •… . … . …•… …. . ……. . ……………….. . … . . . . 204 7.1.5 Decision Trees in R . . . .. ……………. …… .. .. ….. ….. …. ……………… . ….. …….. .. 206
7.2 Na'lve Bayes . …. … ……………. . ….. . …… . ………. . .. . … . ….. .. ….. ……… . …… 211 7.2.1 Bayes' Theorem . . .. . …………………… . …………………………………………….. 212 7.2.2 Nai've Bayes Classifier ………………. •… . … ….. …….•……………………………. .. . 214
CONTENTS
7.2.3 Smoothing . …………… ……………….. . .. . …….. . .. . …… .. • . .. ………. .. ………. . 277 7.2.4 Diagnostics .. . ……….. . ………………… .. …. . .•……… •.•…..•…•…….. . . . ……… 217 7.2.5 Nai've Bayes in R …………… . . .. . …..•… .. . …•.•………•.•.. .. . .. •. •.•…. …….. . .. …. . 278
7.3 Diagnostics of Classifiers ………… •…… ……….. •………. …•…• .. •… •. …. ……….. 224 7.4 Additiona l Classification Methods …. • … • …… • …………. • ……………..•… …. ……… 228 Summary …………….. ….. ………… • ……•………….. .. ……………………..•….. 229 Exercises ……………… … ……… …. …………………….•…. . . . ……………..•….. 230 Bibliography …… . ……….•……… …. ……….. . … . ………….. … …•………………. 231
Chapter 8 • Advanced Analytical Theory and Methods: Time Series Analysis . . .. … . … . .. . 233
8.1 Overview of Time Series Analysis ……. ……. ……………. ……………………. …. ….. 234 8.1.1 Box-Jenkins Methodology ………………. . .. …. …… . ……………….. . .. ….. ………… 235
8.2 ARIMA Model. ……………. . .. . ……. •..•….. .. …… . … •…………….. • … . ..•…….. 236 8.2.1 Autocorrelation Function (A CF) .. ……… …………………. … …….. . ……… . .. ….. ….. 236 8.2.2 Autoregressive Models . …… … ………… . . . .. •. … ….. … . .. … … . ……… . ……. .. . . …. 238 8.2.3 Moving Average Models . .. .. . ……………………………… ……………….. •….. . …. . 239 8.2.4 ARMA and ARIMA Models …………. . ……………………………•………..•…..•……. 241 8.2.5 Building and Evaluating an ARIMA Model ……………………….. . .•………•. •. . … •…… 244 8.2.6 Reasons to Choose and Cautions .. ……………. . .. . …….. .. . . .. . ……. . …. .•.•. •.. . •. . …. . 252
8.3 Additional Methods …….. … . … ……. … .. …… …… .. ……. ……. .. … . …. . … . …… . 253 Summary …………………… … … …… .. ………… • ……… ……… ..• .. …….• … ….. 254 Exercises ………….. . ………. … ……… . •. .. ………………………..• .. . . .. • . .• … ….. 254
Chapter 9 • Advanced Analytical Theory and Methods: Text Analysis …… . … . .. .. .. . . … 255 9.1 Text Analysis Steps ………. . …. ……… …… … ……………….. . …… . …… . . .•……. 257 9.2 A Text Analysis Example ….. •…. …. ………………………. .. ………… …
Our website has a team of professional writers who can help you write any of your homework. They will write your papers from scratch. We also have a team of editors just to make sure all papers are of HIGH QUALITY & PLAGIARISM FREE. To make an Order you only need to click Ask A Question and we will direct you to our Order Page at WriteDemy. Then fill Our Order Form with all your assignment instructions. Select your deadline and pay for your paper. You will get it few hours before your set deadline.
Fill in all the assignment paper details that are required in the order form with the standard information being the page count, deadline, academic level and type of paper. It is advisable to have this information at hand so that you can quickly fill in the necessary information needed in the form for the essay writer to be immediately assigned to your writing project. Make payment for the custom essay order to enable us to assign a suitable writer to your order. Payments are made through Paypal on a secured billing page. Finally, sit back and relax.
About Wridemy
We are a professional paper writing website. If you have searched a question and bumped into our website just know you are in the right place to get help in your coursework. We offer HIGH QUALITY & PLAGIARISM FREE Papers.
How It Works
To make an Order you only need to click on “Order Now” and we will direct you to our Order Page. Fill Our Order Form with all your assignment instructions. Select your deadline and pay for your paper. You will get it few hours before your set deadline.
Are there Discounts?
All new clients are eligible for 20% off in their first Order. Our payment method is safe and secure.
